第十五章 双曲线焦点三角形面积求解(1 / 2)

我的科学时代 仲渊2 1131 字 1个月前

回了平安里,找了家酒楼请何老一行人吃饭。

酒过三巡,菜过五味。

吃完过后,夜已深。

一行人出了酒楼,到了平安里路口,余华二人和何老师傅道别,问了费用,墓位三十五块大洋,白事香烛纸钱等等十块大洋,其余费用不收,共计四十五块大洋。

约定明日上门结清费用,别了何老等人,二人往金果胡同而去。

到了家,进门,正堂内回归曾经的模样,余清河遗像摆在中间。

取出三根香点燃,插在香案上,鞠了三躬,几乎精疲力尽的余华,转身面朝徐锐:“锐子,你先去休息吧,我去学习了。”

余清河出殡之事了结,余华终于可以抽出大量时间来专心学习。

学习永远是处于第一位的。

时不待我,只争朝夕。

他没有一丝时间可以用来浪费。

“老爷,您不休息一下吗?”徐锐望着满脸疲倦的余华,关心道。

“不用管我。”

余华挥了挥手,拖着疲惫的身躯,一步一步走向卧房,进门拉下草绳开关,打开电灯,坐在书桌前翻开算学教科书,回到上午停留之处——解析几何。

解析几何。

这是智慧与难度的集合体,学生一般称之为最猥琐的稳定型难题。

没办法,解析几何的题目,无论是最简单的直线,还是难度中等的三角形和圆,计算过程极其复杂,且计算量极大,层层推演,任何计算步骤错了,就无法继续写下去。

费精神,费墨水,费草稿纸。

这可是高中阶段闻名的重点难题,后世参加高考时,余华看了一眼就头痛,直接放弃。

带着身体的疲倦,怀揣着一颗求知的心,余华沉入了学习之中。

解析几何直线,第一小则——

直线之倾斜角及斜率。

倾斜角:直线朝上之方向与x轴正向之夹角,通常记为α,范围为【0,π);当直线是水平线时,规定α=0。

斜率亦称角系数,表以平面直角坐标系中一条直线对横坐标轴之倾斜程度之量,当倾斜角之正切值,k=tanα;当α=π/2时,称直线斜率不存在;

当直线l与x轴平行或重合时,规定α=0,当α≠π/2时,斜率k=tanα,当α=π/2时,斜率k不存在。

需注意之重点,每一条直线都有一个正确之倾斜角,体现直线对x轴正向之倾斜程度……

细细读阅关于解析几何前期基础阶段的知识点,尽管身体疲倦不已,可余华依旧很快进入熟悉的忘我状态。

整个人极其专注,仿佛不会受到任何外物的打扰,一个个复杂且晦涩难懂的知识点逐渐被理解,在脑海里转变为立体而直观的数学符号,再根据规律演变为数学公式。

这是一种常人难以理解的快感,余华只感觉自己在数学大海里遨游,如同一只海豚般欢快游动,时而转圈,时而浮上水面吐出一口水汽,再猛地蹿向海底。

舒服。

畅快。

甚至有一丝快感。

解析几何之直线内容轻轻松松,解析几何之圆大步而行,解析几何之椭圆小小磕绊,解析几何之双曲线……

结合前身原本就学过的算学知识,现如今,余华的学习效率和进度极其客观。

时间不知过去了多久。

窗外寒风呼啸,屋内寒冷无比。

双眼注视着眼前的双曲线题目,余华面容严肃,眉宇微皱,额头渗出一层汗水,再无先前的意气风发,这是一道非常有难度的双曲线题目。

已知双曲线x2/9-y2/16=1的左、右焦点分为别f1f2,若双曲线上一点p使∠f1pf2=90°,则△f1pf的面积是多少。

主要内容是双曲线焦点三角形面积求解,由普林斯顿大学教授为中学生编撰的教材题目,面积公式和原理不难,一进入实战,就很难了。

余华已经算了四遍,桌案上的草稿纸已经堆了十几页,还是没有算出来。

不是算出来的答案不对,而是根本没算下去。

“奇怪,难道是我思路有问题?换个角度求解,似乎可以这样……”余华揉了揉略微肿胀的额头,右手握着铅笔,再度算了起来。

根据双曲线焦点三角形公式s=b2t(θ/2),根据双曲线的定义有:‖pf1|-|pf2‖=6。

两边平方得:|pf1|2+|pf2|2-2|pf1‖pf2|=36。

由勾股定理可知:

∵,|pf1|2+|pf2|2=|f1f2|2=100

∴,|pf1‖pf2|=32

∴,s=1/2(|pf1‖pf2|)=16。

“呼,好像没